Model Cell System Offers Insights Into Epilepsy, Schizophrenia, Other Neuropsych Disorders

Pin It

Medical researchers have manipulated human stem cells into producing types of brain cells known to play important roles in neurodevelopmental disorders such as epilepsy, schizophrenia and autism. The new model cell system allows neuroscientists to investigate normal brain development, as well as to identify specific disruptions in biological signals that may contribute to neuropsychiatric diseases.

….”Unlike, say, liver diseases, in which researchers can biopsy a section of a patient’s liver, neuroscientists cannot biopsy a living patient’s brain tissue,” said Anderson. Hence it is important to produce a cell culture model of brain tissue for studying neurological diseases. Significantly, the human-derived cells in the current study also “wire up” in circuits with other types of brain cells taken from mice, when cultured together. Those interactions, Anderson added, allowed the study team to observe cell-to-cell signaling that occurs during forebrain development.

In ongoing studies, Anderson explained, he and colleagues are using their cell model to better define molecular events that occur during brain development. By selectively manipulating genes in the interneurons, the researchers seek to better understand how gene abnormalities may disrupt brain circuitry and give rise to particular diseases. Ultimately, those studies could help inform drug development by identifying molecules that could offer therapeutic targets for more effective treatments of neuropsychiatric diseases.

In addition, Anderson’s laboratory is studying interneurons derived from stem cells made from skin samples of patients with chromosome 22q.11.2 deletion syndrome, a genetic disease which has long been studied at The Children’s Hospital of Philadelphia. In this multisystem disorder, about one third of patients have autistic spectrum disorders, and a partially overlapping third of patients develop schizophrenia. Investigating the roles of genes and signaling pathways in their model cells may reveal specific genes that are crucial in those patients with this syndrome who have neurodevelopmental problems.

–Medical News Today

Full Article

Speak Your Mind

*